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Introduction

Mostly flood risk management project involves:
@Use of single 1:N years extreme flow/rainfall event

This approach does not accounts for:
@effect of flood clustering on channel cross-section
@effect of change in channel capacity on flood risk

Aim: To develop a modelling approach inclusive of...

@sediment transport processes & related flood risk
@multi-event simulation

@flood sequence/cluster risk-recovery processes

... we need sufficiently long time-series or possibly multiple
series
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Motivation

@ What effect has N years sediment transport on flood inundation?

» Generate multiple (e.g.100) flow sequences

Sg?c dh;’i‘f;iﬁqrena%dﬁgwg . CH;ti)I)den Markov Model + Generalised Pareto (HMM-

1D sediment « 100 future channel configurations

transport modelling o ’
of flow sequences « Define ‘worst-case’ channel

1D/2D flood hazard  Quantify change in

modelling using . i
‘worst-case’ channel Inundation
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Why do we need such a model?

Q

Computationally efficient at generating multiple realisations for

uncertainty analysis
Provide realistic realisations of river flows
Can be used for long-term modelling

Allows estimation of sediment transport and loading on flood

defences
Ensure long-term sustainability of flood defence assets
Easily applicable at multiple sites

Limits error accumulation that occurs using rainfall and

Distinctly Ambitious
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Field site — Locations

iy
b

@ River Dee — Aberdeenshire
@ Daily mean flow from 1929 — 2012

@ River Falloch — Stirlingshire
@ Daily mean flow from 1970 — 2012

@ River Caldew — Cumbria
@ Daily mean flow from 1968 — 2000

m3/s m3/s m3/s

8.29 26.52 648.50
Falloch 42 0.27 2.17 123.60
Caldew 32 0.75 2.69 96.39

Distinctly Ambitious
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Stochastic Modelling of stream flow

@ to produce desired number of the synthetic flow-series
our approach combines Hidden-Markov Model with
extreme value distribution [Generalised Pareto (GP)].

Hidden Markov Model

e Based on the evolution of process/system in time from a
given state to another state, I.e.

e Exploits the probability of the system to jump from one
state to another

@ Accounts for the transition of system through hidd

en
StateS Distinctly Ambit“
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Hidden Markov Model

A HMM model is comprised of five elements:

1. Set of distinct observed states - Percentile analysis of all
observed values using increment of 10% to define eleven distinct
observed states (A,B,C,D,E,F,G,H,l,J,K)

State A — flow between the minimum and 10t Percentile
State B — flow between the10" and 20" percentile

e ¢ © & & ¢

So on.

Distinctly Ambitious
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2. Set of unobserved (hidden) states within observed
states — account for all the discrete values with one

decimal place within the range of each eleven distinct
observed states.

For example:

»If state A corresponds to values between 0 to 1 then set of

unobserved states corresponding to state A will be 0.1, 0.2, 0.3,
., 0.9

»If state B corresponds to values between 1 to 2 then set of
unobserved states corresponding to state B will be 1.1, 1.2, 1.3,
1.4,...,1.9

Distinctly Ambitious
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3. State transitional probability matrix — probability of
transition between different observed states.

i
€ UNIVERSITY

»Corresponding to eleven distinct states =11 x 11 matrix
A B K

A M, m, .. .. m,
B mba mbb nEn [ ] mbk

K - mka mkb "t > mkk i Distinctly Ambitious ‘
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4. Emission probability matrix — emission probability of
underlying (hidden) states from discrete observed states.

X
€ UNIVERSITY

»Corresponding to eleven distinct states and nine underlying (hidden)
state =11 x 9 matrix

e U
~ M m m .
A 2 al a2 a9 U
e m, my, M,y U
e L
e L
e U
e U
Kk Sm, m, .. mg S
8 E
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5. Set of eleven initial probability of observed states — I
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Extreme Value Distribution

Generalized Pareto (GP) distribution has been fitted to the
data > 99" percentile to sample extreme values

Why Extreme Value Distribution?

> With pure HMM upper extreme values were controlled by
measured data, e.qg.

For example, if original data has n discrete extreme values
X1, Xo, ..., X,; then all synthetic series will have extreme values

sampled from these n values.

> Application of extreme value distribution provide an
opportunity to sample extreme values from a co tII"IUO‘U
distribution rather than few discrete values. ’




HERIOT
FloodMEMORY SR WATT

¥ UNIVERSITY

Results

@ 100 sequences the same length as the historic record
are generated

@ Comparison of probability densities

@ More detailed comparison at a range of percentiles

@ Percentage difference between historic and mean of the
100 sequences

mean (Q p,synthetic ) -Q p,recorded

Qp,recorded

@ Overall Relative Mean Absolute Difference (RMAD)
across the range of percentiles

% Difference =

Q p,synthetic Q p,recorded

100%
X

RMAD =}
n

p=1

Q p,recorded

Distinctly Ambitious
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Pender, D., Patidar, S., Pender, G. & Haynes, H. (2016) Stochastic simulation of daily Distinctly Ambitious
streamflow sequences using a hidden Markov model. Hydrology Research, Vol. 47, no. www.hw.ac.uk
1, pp. 75-88.
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Current uses within flood risk studies
Sediment transport modelling

@ Generate 100 x 50 years of flow data
@ Simulate sediment transport and morphological changes
@ Determine best and worst case future channel and future flood risk
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Figure: The change in Water Surface Elevation
(WSE), along the reach, for the Min/Max; and
All methods for new channel geometries are
provided by the grey and black envelopes
respectively. The average WSE along the
reach using the Min/Max channels is indicated

1in 200yr RP
@Conservative approach:
WSE 1 0.3 - 0.5m
@Extreme approach
@ WSE 1 0.3 -0.4m (mean)
@ WSE 1 0.5 - 0.8m (max)
Future R&D...

v'Finer resolution time step (15min)

v'Constrain run time (POT; clusters)

v'Supply Distinctly Ambitious
www.hw.ac.uk
v'2D
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Inundation modelling
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Inundation modelling

160Q — e . :
—©6— Flooded area @ Increase in inundation area &
140 —6— Flooded volume - volume due to sequence &
1201 morphology
«
§100— 1 @ As RP increases % change
()
S g0l decreases
=
e 601 @ Floods of 5-200yr RPs show 5-
40L 50% increase in flooded area
201 » @ Even small change to hazard
0 - A P carries extra hazard
10° 10’ 10°
Return Period (years :
(y ) Pender, D., Patidar, S., Hassan, K. &
Future R&D... Haynes, .H. (2016).. Meth.o.d. -for
Incorporating Morphological Sensitivity into
@Extent sensitivity probability maps Flood Inundation Modeling. Journal of
Hydraulic Engineering, Vol. 142, Issue 6.

@Soft couple to cluster-from-benchmark?

. Distinctly Ambitious
@More case study sites www.hw.ac.uk
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...Since FloodMEMORY....

FloodMEMORY concludes (May 2016) that:

Single design-event flood risk assessment methodology should be revised
towards multi-event simulation, including channel morphodynamics affecting
floodwater conveyance capacity.

Aim to improve & constrain methods towards practitioner needs ...
@Climate change within the HMM-GP

@Refine DMF time step — 15 minute gauge data

@Constrain sequence — clusters of influence

@Move from single gauge — downstream translation of sensitivity

...S0, we have made a start...

Distinctly Ambitious
www.hw.ac.uk



Integrating precipitation with HMM-GP model for synthesising
flows sequences

Percentile Distribution Model (PDM)
to integrate precipitation information
with the synthetic river flow series
(generated by HMM-GP)

Upper panel - HMM-GP Model has
been trained using 1960-1990 daily
river flow and precipitation data.

Clearly HMM-GP model follows
closely with original flow data

Lower Panel — Model trained on
1960 -1990 data has been used to
synthesis synthetic flow series for
1990 — 2013.

Demonstrate capabilities of PDM-
HMM-GP modelling approach in
effectively incorporating influence of
precipitation with flow series.
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Integrating precipitation with HMM-GP model for synthesising
flows sequences

250
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Model to generate future flow i s
series using daily probabilistic
precipitation projections (available
from UKCPQ9) for two future time
periods:
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Work in progress (IAA — 6 months)

Aim to improve & constrain methods towards practitioner needs ...

Objective 1: Climate change within the HMM-GP

v'use of 15 minute gauge data

v" which UKCIP scenarios?
v'use of multiple gauges (pan-Scotland & downstream translation of sensitivity)

Objective 2: Constrain sequence — clusters of influence

v use of 15 minute gauge data to run sequences

v'describe clusters better (POT thresholds, event duration, cluster kurtosis)

v'compare cluster-in-sequence (CIS) to equivalent cluster-from-benchmark
(CFB)

v" minimum timeframe to capture change (2CFB?)

v' compare hazard analysis by conveyance, capacity, WSE, extent

Objective 3: Consider downstream translation of sensitivity

Distinctly Ambitious
www.hw.ac.uk
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